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Abstract. The continuum and self-consistent discrete analysis of the ground state, the 
soliton pair and the polaron static states of long-chain diatomic polymers is presented. The 
role of electron transfers between second-neighbour sites is discussed and shown to be 
considerably enhanced in comparison with the polyacetylene case. The Peierls gap 2A0, the 
dimerisation coordinate uo,  the soliton charges QA and QB, and the creation and formation 
energies of AB soliton pairs and polarons are calculated. It is verified numerically that the 
finite-band version of the continuum theory accurately describes all the characteristics of 
non-linear states under study, even when very short characteristic lengths of the inhomo- 
geneities are considered. 

1. Introduction 

In our previous paper (Fedyanin and Osipov 1988), we examined the ground-state 
properties and soliton excitations of AB polymers within the framework of the finite- 
band continuum scheme, first proposed by Gammel(l986) for polyacetylene chains. In 
the present paper, we study the physical characteristics of AB soliton pairs and polarons, 
both numerically and analytically. The aim of our paper is twofold. First, we extend the 
Hamiltonian of Rice and Mele (1982) by adding electron transfers between second- 
neighbour sites since their role in some AB polymers could be considerably enhanced 
in comparison with the polyacetylene case. Secondly, we investigate numerically n- 
electron spectra of finite AB chains to estimate effects caused by discreteness of the 
lattice. 

Let us consider the model Hamiltonian 

K 2 

H = -C. C. tn,n+l(C,++l,uCn,u + HC) + a C. ( - l ) n + l C i , u C n , u  + ( u n + 1  - U,)* 
n.u I = 1  n, 0 n 

(1) 
forthe 1inearlyconjugatedAB polymer, where tn,n+l(n = 1,2,  . . . , N )  denoteselectron 
transfers between first and second neighbours, c : , ~  and c ~ , ~  are the creation and annihil- 
ation operators of n-electrons with spin o at a site n ,  a is a one-site potential, K is a 
harmonic spring constant and U ,  are lattice displacements. We note that elastic inter- 
actions are restricted to the nearest-neighbour atomic cores. Also, the kinetic energy 
term is omitted in (1) because we are interested here in static lattice configurations only. 
It is assumed that there is one x-electron per site. 

As usual, we adopt the linear forms for hopping matrix elements: 

(2) - 
tn ,n+l  = t o  - Y ( U ~ + I  - U n )  tn,n+2 - lZA(2B) - Y 2 A ( 2 B ) ( u n + 2  - 
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where to and t2A(2B) are the electron transfer integrals between first and second neighbours 
in a regular chain. The corresponding derivatives of tn,n + and tn,n+Z with respect to inter- 
site separation a in the regular chain are denoted by - y and -Y2A(2B) for odd and even 
sites, respectively. 

It is convenient to rewrite the Hamiltonian (1) in terms of the dimensionless bond- 
length changes U ,  = y ( ~ ~ + ~  - u,)/to: 

where the dimensionless interaction parameters are defined as 

a0 = a / to  1’n = Y 2 A / Y  Or Y 2 B / Y  

T = T A = t2A/to or T = T B = tZB/to (4) 
for odd and even sites, respectively; /3 = y2/Kto. 

It is well known that the ground state of (3) is the Peierls insulator possessing a 
spontaneous dimerisation with a displacement field U, = Lug. The ground-state elec- 
tronic spectrum of (3) is 
Ek = to[-(TA + Tg) cos(2ka) t 2{4[&0 + A T  C O S ( ~ ~ U ) ] ~  

+ cos2(ka) + z 2  sin2(ka)}1i21. 

E ,  = 2Ao = 2to[(ao - AT)’ + (A/to)2]”2 

(5) 
where AT = z B  - zA,  z = A/2to = 2yuo/to and - x /2a  
exhibits the Peierls gap 

k < n/2a .  The spectrum (5) 

(6) 
at the Fermi wavevector kF = n/2a. The parameter z or, equivalently, the dimerisation 
coordinate uo minimises the ground-state energy of the chain, i.e. it is determined as the 
solution of 

(7) 
1 sin2 t d t  

A - eff = {$[ao + A t  cos(2t>l2 + cos2 t + 2 2  sin2 t}1/2 

where Aeff = 4y2/nKto is the dimensionless electron-phonon coupling constant. As 
follows from (6), dimerisation exists for A. > tO(aO - AT) only. Hence, for some AB 
materials with LY close to A. and tZA # t2B, the second-neighbour interactions can easily 
suppress the dimerised structure of the ground state. In a general case (zA # zB) 
equation (7) has to be solved numerically. For tA = zB, we find that 

1/Aeff [(I + ~ ~ ) ~ ’ ~ / ( 1 -  z2)>I[~(m)  - E ( ~ ) I  (8) 
where K(m) and E(m) are the complete elliptic integrals of the first kind and second 
kind, respectively, m2 = (1 - z2)/(1 + y 2 )  andy = a0/2.  Finally, for AT << 1 andy << 1, 
z 1, equation (7) can be solved analytically even for T~ # T and we find that 

A. = 2to[4(ao - AT)’ + 22]1/2 = 8to exp(-l/Aeff - 1). (9) 
The charge transfer 2e* between the A and B atoms becomes 

e* 1 OCc a,, + AT cos(2ka) -=-E 
e N k , o  E k  

9 
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where Ekis given by (9, the sum runs over occupied states and le1 denotes the magnitude 
of the charge e on the electron. 

The soliton excitations or polaron states of (3) can be found exactly for finite AB 
chains by direct numerical calculation or analytically taking the continuum limit of (3) 
which, however, provides an accurate description for z 1 only. We shall consider here 
both methods. 

2. The continuum model 

Let us discuss first the analytical approach. The continuum description of an AB polymer 
was first reported by Rice and Mele (1982). Recently, their linearised scheme has been 
extended by Fedyanin and Osipov (1988) to include the electronic dispersion. Since the 
finite-band scheme involves the Rice-Mele approach as a special case, we start with 
finite-band field equations (for details see Fedyanin and Osipov (1988)) for eigenvalues 
E,, eigenstate amplitudes Ak(x), Bk(X) and the local dimerisation gap A(x) ( h  = 1): 

(Ek - a - t&)Ak(X) = -iUF(k) dBk(X)/dX - [E(k) - iAk(X)]Bk(X) 

(Ek + a - t&)Bk(X) = -iUF(k) dAk(X)/aX - [ & ( k )  f iAk(X)]Ak(X) (11) 

and 

i4y2a OCc 

A(X> = - - [A;  (X)Bk(X) - cc] cos(ka) 
K k , o  

where x = na; the eigenvector corresponding to the eigenvalue Ek is the spinor Ijlk(x) = 
(@j?(x), @z(x)) = (Ak(x)exp(-ikx), Bk(x)exp(-ikx)) normalised according to 
s41,2/2 dx ( l I j l j?(~)1~ + ~ I j l ~ ( x ) ~ ’ )  = 1; Ak(X) = A(x) cos(ka); U F ( ~ )  = u~cos(ka) ,  where 
uF denotes the Fermi velocity uF = 2toa; ~ ( k )  = 2t0 sin(ka); t$ = 2t2A cos(2ka), 
t& = 2t2B cos(2ka) and, finally, the length of the chain L = Na+ =. Only linear terms 
in u / E o  ( E o  = uF/A) are retained in (11) and (12) and, therefore, the derivatives Y2A(2B) 

(which appear in terms of the order of (a/EO)’)  are absent in (11) and (12). We should 
note that here and hereafter the wavevector k is measured relative to kF = n/2a.  

For the ground state A(x) = constant, the solutions of (11) and (12) are plane waves 
with constant amplitudes and yield the eigenvalues given by ( 5 )  with k +  n / 2 a  - k .  In 
periodic chains the topologic constraints imply that the solitons can be created from the 
ground state only in the form of AB soliton pairs. 

Let us consider first the case t2k  = t& = t&.  Since now the effect of the second- 
neighbour hoppings results in a shift of the chemical potential only, it is convenient to 
introduce a new energy variable 8, = Ek - t2k. For a < Ao, we have 

where the plus refers to an A soliton with energy E ,  = +a whereas the minus refers to 
a B soliton with energy EB = -a.  The continuum states have similar energies 8, to those 
of the dimerised chain but they are phase shifted by 6 ( k )  = -tan-l(Ak/Ek). 

A(x) = ? A  tanh(x/ljo) (13) 

The wavefunctions of a single A soliton (k = 0) are 

= AO(x) = NA sech(x/EO) q&) = B,(x) = 0 (14) 
where NA = [(1/21j0) ~o th (L /2~ , , ) ]~ ’~ .  The amplitudes of continuum states ( k  # 0) 
become 

Ak(x) = [Bk(X>/(Ek - + i A k  tanh(x/EO>l Bk(X) = (NkL)-”2 (15) 
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where Nk = 2[Ek - AZCO/L(Ek - a)]/(.&, - a). The amplitudes of a single B soliton 
and corresponding continuum states are obtained from (14) and (15) by changing A + B 
and a+ -a.  

The change in the local electronic density of the dimerised chain induced by the 
presence of the AB soliton pair is 

where v + and v - are occupation numbers of A and B soliton energy levels, respectively. 
The local deficiency in the continuum states Zi is given by 
I ,  = 1/2(1 f Z )  3 [ l / n ( l  - ~ ' ) ] [ n / 2  - K(m)E(P,  m ' )  

A ~ ( x )  = ( U  + - 2 1 + ) p f ( ~ )  + ( V  - - 2 Z L ) p t ( ~ )  (16) 

- - W ) F ( P ,  "1 + K(m)F(P, "11 (17) 
where F ( P ,  m') and E ( P ,  m ' )  are the incomplete elliptic integrals of the first kind and 
second kind, respectively, m' = (1 - m2)l/' and tan P = A(1 + y2)l/*/a(l  - z2)l/*. The 
charge densities p f (x) and p: (x) are 

pf@) = (1/2Eo) sech2[(x - WWCOl 
P W )  = ( m o )  sech2[(x + ~ / 4 m .  

QA(B) = - ( v  i - 21i)IeI. 

+ [Y2/(1 + Y2)1 '21w/2 ,  n,  m)> 

(18) 

As follows from (16) the soliton charges of the AB pair are 

Finally, the creation energy of the AB soliton pair becomes 
2Eexc(v +,  v -) = W ( V  + - v - )  + (4A/n){(l/m2)[E(m) - (1 - m')K(m)] 

where II(n/2,  n,  m)  is the complete elliptic integral of the third kind and n = -(1 - z2). 
Let us now discuss briefly the case t2A # t2B. As relevant derivations within the finite- 

band scheme are lengthy and do not result in closed analytical formulae, we restrict 
our analysis in this paper to only the linearised version of equations (11) and (12). 
Approximating in (11) sin x CY x and cos x 1 and introducing a new energy variable 
E,  = Ek - (tZA + t2B), we arrive at the modified equations of Rice and Mele (1982): 

(19) 

(20) 

(21) 
[ E ,  - (a - At>]qA(X) = [-iuFvx + lA(X)]qB(x) 

[ E ,  + ( a  - A t ) l q ~ ( X )  = [-iUFvx - ih (X)]q~(X)  
where At = t2B - t2A. Hence, changing simply a + a - At, one can readily apply all the 
formulae in the paper by Rice and Mele (1982). For example, the creation energy of a 
neutral AB soliton pair is 
2Eexc(v +,  v - )  = ( a  - At)(2 + v + - v -) 

+ (4/n){A - ( a  - A f )  tan-'[A/(a - At)]}. (22) 
From (22) it follows that the second-neighbour interactions can significantly modify an 
energy required to excite an AB soliton pair. Similarly, changing a + a - Atin polaron 
solutions of (21) (Campbell 1983), we find that the polaron becomes unstable at 
(a -  At) > A 0 / G  and decays into an AB soliton pair. Thus the second-neighbour- 
interactions also affect the stability of the polaron states. 

3. The discrete model 

To investigate effects caused by discreteness of the lattice, we carried out numerical 
calculations on periodic chains (i.e. rings with fixed lengths) using the self-consistent 
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discrete method proposed by Shastry (1983) and applied by several workers to poly- 
acetylene and polyyne chains and rings (Stafstrom and Chao 1984, Drechsler et a1 1987, 
Malek et a1 1988). The modification of the discrete method to a diatomic polymer 
case is straightforward. The eigenvalue problem for a periodic chain described by the 
Hamiltonian (3) is 

N 

where the eigenvalues Ek and the eigenvectors lk) (the index k now includes the spin 
index) depend, of course, on the bond length changes {U,}. Minimising the total energy 
of the periodic chain 

occ . N  
I 

Ek + - 2 U: E t o t  = 
k = l  2/3 n = l  

under the constraint condition expressing periodic boundary conditions 
N 

x u n = o  
n = l  

with respect to U,, we arrive at the self-consistent equations 
occ 

u n  = b(A  - 2 [qz (n  + l ) q k ( n )  + vnqk*(n + 2 ) q k ( n )  
k =  1 

f P n - 1  qz (n  f 1 ) q k ( n  - 1 )  + cc] 

where the Lagrange multiplier A is 

1 
- 2 2 [qz (n  + l ) q k ( l Z )  + v n q z  Nn=1 k = l  

OCC 

A + 2 ) q k ( n )  

+ P n - 1 q ; k Y n  + l > q k ( n  - 1> + ccl (27) 
and the index k runs over all occupied spin orbitals. 

Equations (23)-(27) may be solved by an iteration procedure for the ground-state, 
AB soliton pair and polaron states, respectively, utilising continuum theory expressions 
for displacements U, as starting ansatz. The creation energy 2E,,, of an AB soliton pair 
and the formation energy EFor of a polaron state are 2E,,, = Ek: - and 
Efor = EL, - are the relevant total energies given by 
(24). The ground-state charge structure along the periodic chain (in the zero differential 
overlap (ZDO) approximation) is 

where E::, E:,, and 

, occ 

where the second term in (28) describes the charge of atomic cores. The change ApAB(n) 
in the charge distribution of the dimerised ring induced by the AB soliton pair or the 
change ApP(n) induced by the polaron becomes 

occ 
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$ 1  -3 

T 

Figure 1. The charge distribution A.pAB(n) of an AB soliton pair along a ring with N = 82 
sites. For the parameter set used, see table 1. 

where {q f B  (n)} ,  {I# E (n)}  and { I# !IM ( n ) }  are the relevant eigenvectors of (3). A typical 
shape of the charge distribution ApAB(n) is shown in figure 1. 

The stable arrangement of a single AB soliton pair on the ring is such that ring regions 
with positive and negative values of the order parameter (-l)n+lun, respectively, have 
the same number of sites. Thu,, excited periodic chains of N = 4M + 2 sites can be 
divided into two ‘open’ chains of 2M + 1 sites with soliton centres on their middle sites. 
For even values of M ,  the A soliton with energy +a is centred on the A atom and B 
soliton with energy -a on the B atom. The soliton charges QA and QB result from 
summing the charge distribution ApAB(n) over the corresponding regions (i.e. over A 
or B ‘open’ chains) of the ring. 

4. Results and discussion 

We have performed numerical calculations on rings with N = 82, 162 and 202 atoms. 
Using the representative values to  = 3 eV, K = 68.6 eV A-2, y = 8 eV A-’ and a = 
0.3 eV, which yield the characteristic length f o  CC 9.la,  we calculated the Peierls gap 
2A0, the dimerisation coordinate uo, the soliton charges QA and QB, and the creation 
and formation energies of AB soliton pairs and polarons. Neglecting second-neighbour 
transfers, we obtained the results given in tables 1 and 2. One can immediately observe 
the perfect agreement between the results of the finite-band version of the continuum 
theory and the discrete model. From tables 1 and 2 it follows also that for a/Eo 1 the 
Rice-Mele scheme is sufficiently accurate to describe well all the characteristics of the 
ground and excited or polaron states of AB polymers. We note that there is almost no 
difference between the numerical results derived from the rings with 162 and 202 sites. 

To verify limits of the continuum theory, we changed the spring constant to K = 
34.3 eV k2 which yields E o  2 . 0 ~ .  The results can be found in table 3. In this case, of 
course, the linearised scheme does not work so well but the finite-band scheme still 
conforms well to the results of the discrete-model calculation. This is an important fact 
because, in AB analogues of the polyyne chains, one can expect solitons and polarons 
with very short characteristic lengths. 

The decay process of the negatively charged polaron state into the charged pair of A 
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Table 1. The dimerisation gap parameter A. (see equations (8) and (9) for the finite-band 
and linearised version of the continuum theory, respectively), the dimerisation coordinate 
uo (determined as U 0  = A/4y in the continuum model and as u o  = -toul/2y in the discrete 
mode), the soliton charges Q, and QB, and the creation energy 2E,,, of the neutral AB 
solitonpair forto = 3 eV, K = 68.6 eV A-', y = 8 eV A-', (Y = 0.3 eV, andt,, = t2B = yzA = 

Y2B = 0. 

N A0 U 0  QA(B) 24xc 
Model (sites) (ev)  (A) (14) (ev) 

Discrete 82 0.718 0.0193 k0.685 0.390 
162 0.722 0.0204 k0.722 0.391 
202 0.722 0.0204 t0.722 0.391 

Finite band - 0.724 0.0206 20.722 0.394 

Linearised - 0.706 0.0200 20.721 0.382 

Table 2. The characteristics of the negatively charged polaron. For notations and the 
parameter set used see table 1. 

Discrete 82 0.726 0.0203 -1 0.647 
162 0.722 0.0204 -1 0.645 
202 0.722 0.0204 -1 0.645 

Linearised - 0.706 0.0200 -1 0.636 

Table 3. The characteristics of the neutral AB soliton pairs calculated with use of t o  = 3 eV, 
y = 8 eV A-', K = 34.3 eV k2, LY = 0.3 eV and t2, = tZB = y2 ,  = yzB = 0 ( E 0  cc 2 . 0 ~ ) .  

N A0 U 0  QA(B) 2 L  
Model (sites) (ev)  (A) ( le i )  (eV) 

Discrete 82 2.978 0.0920 k0.923 2.877 
162 2.978 0.0927 20.923 2.875 
202 2.978 0.0927 20.923 2.875 

Finite band - 2.991 0.0930 20.923 2.844 

Linearised - 2.497 0.0775 20.923 2.603 

and B solitons is shown in figure 2. The calculation was carried out on the ring with 162 
atoms using the above-mentioned parameter set with a = 0.6 eV and t2A = t2B = 0. The 
polaron decays into the B soliton with the charge Q B  = -0.3671el and the A soliton with 
Q A  = -0.6331eI. The linearised theory (see table 1) gives A,, = 0.706 eV and 
A = (Ai - a2)lI2 = 0.372 eV which, in accord with discrete calculation, yields Q B  = 
-(2/n) tan-l(A/a)Iel = -0.3531el and Q A  = -(1 + Q A )  = -0.647(e/. 

Finally, in figure 3, we show the effect of the second-neighbour transfers on the 
creation energy of a neutral AB soliton pair. The calculations were performed on the 
ring with 162 sites by using the parameter set with cx = 0.3 eV and At varied from -0.3 
to 0.3 eV. The values t2* = t2B = 0.05t0 were set as the centre of At interval. We assumed 



2958 V A Osipov et a1 

20 80 140 
0 

I/_- 
- 0.2 -0.1 0 0.1 0.2 

A t  ieV1 

Figure 2. The decay process of a negatively Figure 3. The creation energy of a neutral AB 
charged polaron into a singly charged AB soliton soliton pair as a function of At = t2B - t ,  and 
pair in which the order parameter p = (-1)" +' Ay = y2B - yZA: curve A ,  analytic continuum 
v,to/y is shown: curve A,  starting ansatz: curve form with Ay  = 0; curve B. self-consistent 
B, p after 100 iterations; curve C, self-consistent discrete forms with At/to = A y / y .  
solution. 

exponential dependence of the hopping integrals t2A and t2B on the inter-atomic sep- 
aration which yields z A  = PA and sB = IjB, i.e. AT = Ay = QB - QA (see also (4)). In 
accord with analytical predictions (see (22)) the calculated creation energy 2E,,, strongly 
depends on the value of At. Since a/Eo 4 1 the second derivatives 9,  do not play any 
essential role. We note that for Af-+ a0 the localised levels are shifted to the midgap 
and we arrive at the well known picture of the trans-polyacetylene case. For Af -+ LY - A 
the localised levels tend to the band edges and. therefore, in the polymers with LY 

close to A o ,  the second neighbour transfers can make the creation of AB soliton pairs 
impossible. 
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